A Jacobian criterion of smoothness for algebraic diamonds

Laurent Fargues (CNRS/IMJ) - Joint with P. Scholze

## Motivation

- ▶ Problem : Give a meaning to  $Bun_G$  is "smooth of dimension 0",  $U \rightarrow Bun_G$  is a "smooth chart" on  $Bun_G$ .
  - ▶ Bun<sub>G</sub> = v-stack of G-bundles / curve (stack on  $Perf_{\mathbb{F}_p}$ )
  - U = locally spatial diamond
  - → no infinitesimal crietrion (perfect world), no Jacobian criterion
- Solution : cohomological smoothness ("Étale cohomology of diamonds")
   morphisms that satisfy relative Poincaré duality

## Cohomological smoothness

• Spaces :  $\mathfrak{X} = \text{small } v\text{-stack}$ 

- small=∃v-presentation by perfectoid spaces
- v-stack=Stack on Perf<sub>Fp</sub> + v-topology
- ► Example : Beauville-Laszlo : Gr<sup>B</sup><sub>G</sub>R → Bun<sub>G</sub> Gr<sup>B</sup><sub>G</sub>R = B<sub>d</sub>R-affine Grassmanian = ind-diamond v-surjective (analog of Drinfeld-Simpson known)

• Coefficients : 
$$\Lambda = \mathbb{Z}/n\mathbb{Z}$$
,  $(n, p) = 1$ 

$$D_{\text{\acute{e}t}}(\mathfrak{X},\Lambda) = \left\{ \mathscr{F} \in \underbrace{D(\mathfrak{X},\Lambda)}_{\substack{\text{cartesian}\\ v-\text{sheaves}}} \mid \forall \underbrace{U}_{\substack{\text{strictly tot disc}\\ perf space}} \xrightarrow{f} \mathfrak{X}, f^* \mathscr{F} \in \underbrace{D(U_{\text{\acute{e}t}},\Lambda)}_{=D(|U|,\Lambda)} \right\}$$
$$= D_{cart}(|U_{\bullet}|,\Lambda)$$

for some simplicial strictly tot. disc. perf. space  $U_{\bullet}$ 

 Morphisms : X → Y representable in loc. spatial diamonds (compactifiable, dim trg f< +∞)</li>

# Cohomological smoothness

 $f:\mathfrak{X}\longrightarrow\mathfrak{Y}$ 

$$D_{\text{\acute{e}t}}(\mathfrak{X},\Lambda) \xrightarrow[f]{f_{!}} D_{\text{\acute{e}t}}(\mathfrak{Y},\Lambda)$$

#### Definition

f is cohomologically smooth if  $f^! \simeq f^* \otimes \mathbb{L}$  universally  $/\mathfrak{Y}$  with  $\mathbb{L}$  invertible i.e. v-locally  $\simeq \underline{\Lambda}[d]$ 

Equivalent to : 1.  $f^! \underline{\Lambda} \otimes f^*(-) \xrightarrow{\sim} f^!(-)$  (canonical morphism=iso) 2.  $f^! \underline{\Lambda}$  invertible

Important property : coho. smoothness v-local / base

#### Examples of coho smooth morphisms

 f: X → Y morphism of "classical" rigid spaces /K f smooth ⇒ f°: X° → Y° coho smooth (Huber's relative Poincaré duality)
 B<sup>d,1/p<sup>∞</sup></sup> → S with S ∈ Perf<sub>F</sub>

$$f: X \longrightarrow Y$$

morphism of loc. spatial diamonds K = pro-p group acts freely on X/Y

$$g: X/\underline{K} \longrightarrow Y$$

Then f coho smooth  $\Rightarrow g$  coho smooth

 $\underline{\Lambda} : X \to X/\underline{K} \text{ not coho smooth}$  A = profinite set  $h: \underline{A}_{Spa(C,\mathcal{O}_{C})} \to \text{Spa}(C,\mathcal{O}_{C})$ étale sheaves /  $\underline{A}_{Spa(C,\mathcal{O}_{C})} = \mathscr{C}^{\infty}(A,\Lambda) - \text{modules}$  $h^{!}\Lambda = \mathscr{D}(A,\Lambda)$ 

(distributions)

#### Examples of coho smooth morphisms

► 
$$X_S = \text{curve } / \text{Spa}(\mathbb{Q}_p)$$
 "parametrized by  $S \in \text{Perf}_{\mathbb{F}_p}$ '

 $\mathscr{E}/X_S$  vector bundle > 0 H.N. slopes fiberwise on S

$$BC(\mathscr{E}) = \mathsf{relative} \ H^0 \ \mathsf{of} \ \mathscr{E} \ \colon T/S \longmapsto H^0(X_T, \mathscr{E}_{|X_T})$$

Then :  $BC(\mathscr{E}) \rightarrow S$  is coho smooth

Kedlaya-Liu 
$$\Rightarrow$$
 loc./S  $\exists 0 \rightarrow \mathscr{E}' \rightarrow \mathscr{E}'' \rightarrow \mathscr{E} \rightarrow 0$  with  
 $\mathscr{E}'$  s.s. slope 0 (fiberwise /S)  
 $\mathscr{E}''$  s.s. slope  $\frac{1}{n}$  for some  $n \ge 1$  (fiberwise /S)  
 $0 \longrightarrow \underbrace{BC(\mathscr{E}')}_{\text{pro-étale}} \longrightarrow \underbrace{BC(\mathscr{E}'')}_{\substack{od,1/p^{\infty}\\ loc.S \supseteq \mathbb{B}_{S}}} \longrightarrow BC(\mathscr{E}) \longrightarrow 0$ 

 $\Rightarrow BC(\mathscr{E})/S$  is coho smooth

▶ Idem with  $BC(\mathscr{E})$  = relative  $H^1$ , if  $\mathscr{E}$  has <0 H.N. slopes fiberwise /S

Example :  $BC(\mathcal{O}(-1)) = (\mathbb{G}_{a,S^{\sharp}})^{\diamond}/\mathbb{Q}_{p}$ 

Starting point of discussions about smoothness with Scholze.

 $G/\mathbb{Q}_{p}$  affine alg. group then

 $[\bullet/G(\mathbb{Q}_p)] =$ classifying stack of pro-étale  $G(\mathbb{Q}_p)$ -torsors

is cohomologically smooth of dimension 0. If G reductive

$$\left[ \bullet / \underline{G(\mathbb{Q}_p)} \right] = \operatorname{Bun}_G^{\operatorname{ss}, c_1 = 0} \stackrel{\operatorname{open}}{\hookrightarrow} \operatorname{Bun}_G$$

 $\rightsquigarrow$  particular case of chat we want to prove (Bun<sub>G</sub> coho smooth)

#### An application of the examples

►  $G = GL_n$ .  $U \subset BC(\mathcal{O}(1))^n$  open  $(\neq \phi)$  subset of surjections

$$u: \mathcal{O}^n \twoheadrightarrow \mathcal{O}(1)$$

s.t. ker(u) has <0 H.N. slopes.  $\underline{GL_n(\mathbb{Q}_p)} = \underline{Aut}(\mathcal{O}^n)$  acts freely on U.  $K \subset GL_n(\mathbb{Q}_p)$  pro-p open

$$f: U/\underline{K} \longrightarrow [\bullet/\underline{\operatorname{GL}}_n(\mathbb{Q}_p)]$$

via  $U \to \bullet$  and  $\underline{K} \hookrightarrow \operatorname{GL}_n(\mathbb{Q}_p)$ 

►  $U/K \rightarrow \bullet$  is coho smooth

►  $f = \text{locally trivial fibration in } U \underset{K}{\times} \text{GL}_n(\mathbb{Q}_p) = \coprod_{K \setminus \text{GL}_n(\mathbb{Q}_p)} U = \text{coho smooth}$ 

▶ Any G. Fix  $G \hookrightarrow GL_n$ ,  $K \subset G(\mathbb{Q}_p)$  pro-p open and consider

 $U/\underline{K} \longrightarrow [\bullet/\underline{G}(\mathbb{Q}_p)]$ 

# Statement of the main theorem

 $S = \text{Spa}(R, R^+)$  affinoid perfectoid

$$Z \rightarrow X_S$$
  
smooth adic space, adification of  $\mathfrak{Z} \rightarrow \underbrace{\mathfrak{X}_R}_{schematical}$  quasi-projective

Definition  $\mathcal{M}_Z = a \text{ moduli space of sections of } Z/X_S$ 

$$\mathcal{M}_{Z}: T/S \longmapsto \left\{ f, \begin{array}{c} Z \\ f \not \\ f \not \\ \chi_{T} \\ \chi_{S} \end{array} \right\} \text{ s.t. } f^{*} T_{Z/X_{S}} \text{ has } > 0 \text{ H.N. slopes fiberwise}/T \right\}$$

Theorem

 $\mathcal{M}_Z \longrightarrow S$  is a cohomologically smooth morphism of locally spatial diamonds

## Examples of spaces $\mathcal{M}_Z$

▶ *linear case* :  $Z = V(\mathcal{E}), \mathcal{E} = \text{vector bundle on } X_S$ 

$$\mathcal{M}_Z = BC(\mathcal{E}) \times_S U$$

where  $BC(\mathscr{E})$  =relative  $H^0$  of  $\mathscr{E}$ , U =open subset of S where  $\mathscr{E}$  has >0 H.N. slopes

• projective space case :  $Z = \mathbb{P}(\mathscr{E})$ 

$$\mathcal{M}_Z = \coprod_{d \in \mathbb{Z}} U_d / \underline{\mathbb{Q}_p}^{\times}$$

 $U_d \subset BC(\mathscr{E}^{\vee}(d)) \setminus \{0\}$  open subset of surjections

$$u: \mathscr{E} \to \mathscr{O}(d)$$

s.t. ker u has H.N. slopes < d

• Gromov-Witten case :  $Z = X_S \times_{Spa(\mathbb{Q}_p)} Z'$ . Then  $\mathcal{M}_Z$  defined over  $Spa(\mathbb{F}_p)$ 

= moduli of morphisms  $f: X_S \to Z'$  s.t.  $f^* T_{Z'/\mathbb{Q}_p}$  is >0

## Examples of spaces $\mathcal{M}_Z$

► Reduction of a G-bundle to a parabolic subgroup : P ⊂ G parabolic subgroup

$$\operatorname{Bun}_P^{>0} \subset \operatorname{Bun}_P$$

open substack

$$\operatorname{Bun}_{P}^{>0} = \{P\operatorname{-bundles} \mathscr{E} \mid \mathscr{E} \times \mathfrak{g}/\mathfrak{p} \text{ has } > 0 \text{ H.N. slopes} \}$$

 $\label{eq:Ad} \begin{array}{l} Ad: P \to \mathsf{GL}(\mathfrak{g}/\mathfrak{p}) \mbox{ (adjoint representation)}. \end{array}$  Theorem implies :

 $\operatorname{Bun}_P^{>0} \longrightarrow \operatorname{Bun}_G$  is coho smooth

 $\rightarrow$  nice coho smooth charts on  $\operatorname{Bun}_G$ ,  $\pi_b : \mathscr{M}_b \rightarrow \operatorname{Bun}_G$  (see Scholze's IHES lectures)

*Example* :  $G = GL_n$ , P = Borel,  $Bun_P^{>0} = moduli of$  $0 = \mathscr{E}_0 \subsetneq \mathscr{E}_1 \subsetneq \cdots \subsetneq \mathscr{E}_n = \mathscr{E}$ 

full flag s.t.

$$\deg(\mathscr{E}_i/\mathscr{E}_{i-1}) < \deg(\mathscr{E}_{i+1}/\mathscr{E}_i)$$

"anti-HN filtration"

# Proof of the main theorem : formal smoothness

Definition

 $f: X \longrightarrow Y$  is formally smooth if for any diagram



where  $S_0 \hookrightarrow S$  is a Zariski closed embedding of aff perf spaces,  $\exists s \ (up \ to replacing S \ by an \ étale \ neighborhood \ of <math>S_0$ )

 $\rightarrow$  More near from the topological notion of Euclidean Neighborhood Retract (Borsuk) than Grothendieck's algebraic notion. Example : X, Y aff perf



for some set I. Then

X/Y fs  $\Leftrightarrow \exists$  retraction s

(up to replacing  $\mathbb{B}'_{Y}$  by an étale neighborhood of X)

# Proof of the main theorem : formal smoothness

#### Theorem

The morphism  $\mathcal{M}_Z \longrightarrow S$  is formally smooth

#### Remarks :

- 1. "Classical" case X/k smooth projective curve, replacing ">0 H.N. slopes" in the def. of  $\mathcal{M}_Z$  by "has no  $H^1$ ", this is very easy (with Groth. def. of formal smoothness)
- 2. formally smooth does not imply coho smooth à priori. For example normal crossing divisor  $\{xy = 0\} \subset \mathbf{A}_{\mathbb{C}}^2$  is a topological retract but no coho smooth

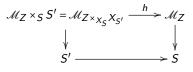
Proof of the main theorem : consequence of formal smoothness

$$f: \mathcal{M}_Z \longrightarrow S$$

 $\begin{array}{l} f \text{ formally smooth} \Rightarrow \underline{\Lambda} \text{ is } f\text{-U.L.A. (see Scholze's talk)} \\ \Rightarrow f^! \underline{\Lambda} \otimes f^*(-) \xrightarrow{\sim} f^!(-) \end{array}$ 

Thus it remains to prove that  $f^!\underline{\Lambda}$  is invertible.

Use : f formally smooth  $\Rightarrow$  the dualizing complex  $\mathbb{D}_{\mathcal{M}_Z/S} := f^! \underline{\Lambda}$  is compatible with base change : for any  $S' \rightarrow S$ , if



$$h^* \mathbb{D}_{\mathcal{M}_Z/S} = \mathbb{D}_{\mathcal{M}_Z \times_{X_S} X_{S'}}/S'$$

 $\Rightarrow$  one can suppose  $\mathcal{M}_Z \rightarrow S$  has a section s and we want to prove

$$s^* \mathbb{D}_{\mathcal{M}_Z/S}$$

is invertible.

## Proof of the main theorem : deformation to the normal cone

s = section of  $\mathcal{M}_Z/S$  corresponds to  $\sigma =$  section of  $Z/X_S$ 

$$\sigma: X_S \hookrightarrow Z.$$

 $Z \times \mathbb{B}^1$  = blow-up of  $Z \times \mathbb{B}^1$  along  $(\sigma, 0)$  (deformation to the normal cone of  $\sigma: X_S \hookrightarrow Z$ ) Considering

$$(\widetilde{Z \times \mathbb{B}^1}) \times_{\mathbb{B}^1} \mathbb{B}^{1,1/p^{\infty}}$$

one defines  $(\mathbb{B}_S := \mathbb{B}_S^{1,1/\rho^{\infty}})$  $\tilde{s} \subset \bigvee_{\mathbb{R}^+}^{\widetilde{\mathcal{M}}} \rho$ 

satisfying

$$\rho^{-1}(\mathbb{B}_{S} \setminus \{0\}) = \mathcal{M}_{Z} \times_{S}(\mathbb{B}_{S} \setminus \{0\}) \text{ and } \tilde{s} \leftrightarrow (s, Id)$$
 $\tilde{s}_{|\rho^{-1}(0)} : S \xrightarrow{\text{zero section}} BC(\underbrace{\sigma^{*} T_{Z/X_{S}}}_{\text{conormal bundle to } \sigma}) \xrightarrow{\text{open}} \rho^{-1}(0)$ 

#### Proof of the main theorem : deformation to the normal cone



 $\varpi \in \mathscr{O}(S) = p.u.$  element

$$\times \varpi: \mathbb{B}_{S}^{1,1/p^{\infty}} \to \mathbb{B}_{S}^{1,1/p^{\infty}}$$

multiplication by @.

$$\begin{aligned} &\mathcal{K} := \tilde{s}^* \rho^! \underline{\Lambda} = \text{complex of } \varpi^{\mathbb{N}} \text{-equivariant étale sheaves on } \mathbb{B}_S \text{ s.t. if} \\ &i: S \hookrightarrow \mathbb{B}_S^{1,1/p^{\infty}} \text{ (zero section)} \\ &i^* \mathcal{K} \end{aligned}$$

is invertible (coho smoothness of  $BC(s^*T_{Z/X_S})$  + formal smoothness of  $\rho$ )  $\implies K$  is invertible using that  $\times \varpi : \mathbb{B}_S^{1,1/p^{\infty}} \to \mathbb{B}_S^{1,1/p^{\infty}}$  is contracting.  $\implies$  the result looking at  $K_{|\mathbb{B}_S \setminus \{0\}}$ .

# A Jacobian criterion

$$\begin{aligned} d > 0, \ P \in \mathbb{Q}_p[X_1, \dots, X_n] \text{ homogeneous of degree } \delta \\ BC(\mathscr{O}(d)) &= (B^+_{cris})^{\varphi = p^d} \\ \widetilde{P} : BC(\mathscr{O}(d))^n \longrightarrow BC(\mathscr{O}(d\delta)) \end{aligned}$$
  
For  $x \in BC(\mathscr{O}(d))^n(C)$   
$$Jac_{\widetilde{P}, x} : \mathscr{O}(d)^n \longrightarrow \mathscr{O}(d\delta) \end{aligned}$$

linear morphism between v.b./ $X_C$ .

U = open subset where  $Jac_{\widetilde{P},x}$  is surjective with >0 kernel.

Then  $U \to \operatorname{Spa}(\mathbb{F}_p)$  is cohomologically smooth.

# Conclusion

Good notion = formally smooth + cohomologically smooth

Pattern : prove first something is formally smooth  $\rightsquigarrow$  much easier then to prove this is coho smooth